Abstract

This work examined the feasibility of employing various thresholding algorithms to determining the optimal bilevel thresholding value for estimating the geometric parameters of sludge flocs from the microtome sliced images and from the confocal laser scanning microscope images. Morphological information extracted from images depends on the bilevel thresholding value. According to the evaluation on the luminescence-inverted images and fractal curves (quadric Koch curve and Sierpinski carpet), Otsu's method yields more stable performance than other histogram-based algorithms and is chosen to obtain the porosity. The maximum convex perimeter method, however, can probe the shapes and spatial distribution of the pores among the biomass granules in real sludge flocs. A combined algorithm is recommended for probing the sludge floc structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.