Abstract

The solution to a multiobjective optimization problem consists of the nondominated set that portrays all relevant trade-off information. The ultimate goal is to identify a Decision Maker’s most preferred solution without generating the entire set of nondominated solutions. We propose a bilevel programming formulation that can be used to this end. The bilevel program is capable of delivering an efficient solution that maps into a given set, provided that one exits. If the Decision Maker’s preferences are known a priori, they can be used to specify the given set. Alternatively, we propose a method to obtain a representation of the nondominated set when the Decision Maker’s preferences are not available. This requires a thorough search of the outcome space. The search can be facilitated by a partitioning scheme similar to the ones used in global optimization. Since the bilevel programming formulation either finds a nondominated solution in a given partition element or determines that there is none, a representation with a specified coverage error level can be found in a finite number of iterations. While building a discrete representation, the algorithm also generates an approximation of the nondominated set within the specified error factor. We illustrate the algorithm on the multiobjective linear programming problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.