Abstract

Bilevel programming involves two optimization problems where the constraint region of the upper level problem is implicitly determined by another optimization problem. In this paper we focus on bilevel problems over polyhedra with upper level constraints involving lower level variables. On the one hand, under the uniqueness of the optimal solution of the lower level problem, we prove that the fact that the objective functions of both levels are quasiconcave characterizes the property of the existence of an extreme point of the polyhedron defined by the whole set of constraints which is an optimal solution of the bilevel problem. An example is used to show that this property is in general violated if the optimal solution of the lower level problem is not unique. On the other hand, if the lower level objective function is not quasiconcave but convex quadratic, assuming the optimistic approach we prove that the optimal solution is attained at an extreme point of an ‘enlarged’ polyhedron.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call