Abstract

With the development of energy internet and power market, the operation regulation and pricing mechanism of traditional virtual power plants are improved to adapt to the new environment. In this paper, a bi-level multi-time scale scheduling method based on bidding for multi-operator virtual power plant is proposed to provide a framework for solving the interest distribution between operators and optimal scheduling problems of multiple-operator virtual power plant. An operator power allocation and internal electricity price formation method based on bidding equilibrium is proposed in the upper level, which introduces the fluctuation cost coefficient to express the influence of the uncertainty of renewable energy power generation on the bidding process. A multi-time scale optimal scheduling method combining scheduling model and adjustment strategy is established in the lower level. A default penalty mechanism in the scheduling model is used to ensure that operators provide the electricity allocated from the bidding process and considering the influence of demand response based on internal electricity price on adjustment strategy. Simulation results show that the proposed method can realize the optimal distribution of operators’ power generation and form the internal electricity price that reflects the internal supply and demand level of virtual power plant. Besides, it can reduce the impact of uncertainty on dispatching results and improve the application range of virtual power plant to enhance the competitiveness of virtual power plant in market transactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.