Abstract
Coordination is one of the essential problems in multi-agent systems. Typically multi-agent reinforcement learning (MARL) methods treat agents equally and the goal is to solve the Markov game to an arbitrary Nash equilibrium (NE) when multiple equilibra exist, thus lacking a solution for NE selection. In this paper, we treat agents unequally and consider Stackelberg equilibrium as a potentially better convergence point than Nash equilibrium in terms of Pareto superiority, especially in cooperative environments. Under Markov games, we formally define the bi-level reinforcement learning problem in finding Stackelberg equilibrium. We propose a novel bi-level actor-critic learning method that allows agents to have different knowledge base (thus intelligent), while their actions still can be executed simultaneously and distributedly. The convergence proof is given, while the resulting learning algorithm is tested against the state of the arts. We found that the proposed bi-level actor-critic algorithm successfully converged to the Stackelberg equilibria in matrix games and find a asymmetric solution in a highway merge environment.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.