Abstract

Fluid and ion secretion in the gallbladder is mainly triggered by the intracellular second messenger cAMP. We examined the action of bile salts on the cAMP-dependent pathway in the gallbladder epithelium. Primary cultures of human gallbladder epithelial cells were exposed to agonists of the cAMP pathway and/or to bile salts. Taurochenodeoxycholate and tauroursodeoxycholate increased forskolin-induced cAMP accumulation to a similar extent, without affecting cAMP basal levels. This potentiating effect was abrogated after PKC inhibition, whereas both taurochenodeoxycholate and tauroursodeoxycholate induced PKC-alpha and -delta translocation to cell membranes. Consistent with a PKC-mediated stimulation of cAMP production, the expression of six adenylyl cyclase isoforms, including PKC-regulated isoforms 5 and 7, was identified in human gallbladder epithelial cells. cAMP-dependent chloride secretion induced by isoproterenol, a beta-adrenergic agonist, was significantly increased by taurochenodeoxycholate and by tauroursodeoxycholate. In conclusion, endogenous and therapeutic bile salts via PKC regulation of adenylyl cyclase activity potentiate cAMP production in the human gallbladder epithelium. Through this action, bile salts may increase fluid secretion in the gallbladder after feeding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.