Abstract

Toxic bile salts induce hepatocyte apoptosis, a model relevant to liver injury during cholestasis. However, the signaling mechanisms culminating in bile salt-induced apoptosis remain unclear. Because protein kinase C (PKC) is activated by bile salts in hepatocytes and causes apoptosis in other cells, we tested the hypothesis that bile salt-induced hepatocyte apoptosis is mediated by PKC. The PKC inhibitors chelerythrine and Gö-6976 reduced, whereas a PKC agonist, phorbol 12-myristate 13-acetate (PMA), increased glycochenodeoxycholate (GCDC)-induced hepatocyte apoptosis. Membrane-associated total PKC activity was increased in GCDC-treated hepatocytes. Quantitative immunoblot analysis demonstrated membrane translocation of PKC-alpha, PKC-delta, and PKC-epsilon to hepatocyte membranes after administration of GCDC. Direct activation of PKC-alpha and PKC-delta by GCDC was also demonstrated using recombinant, baculovirus-expressed PKC isoforms in a medium of defined lipid composition. Chelerythrine and Gö-6976 reduced, whereas PMA enhanced, cathepsin B activity during treatment of hepatocytes with GCDC, demonstrating coupling of PKC activity to the protease effector mechanisms of apoptosis. In conclusion, our data suggest for the first time that PKC-dependent signaling pathways play a critical role in bile salt-induced hepatocyte apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.