Abstract
BackgroundThe mechanisms by which gastroesophageal reflux promotes malignant progression in Barrett's esophagus are poorly understood. The phosphatidylinositol-3-kinase (PI3 kinase)/Akt pathway regulates proliferation and apoptosis. We hypothesized that the PI3 kinase/Akt pathway mediates the pro-proliferative and antiapoptotic effects of bile. MethodsThe Barrett's adenocarcinoma cell line, SEG-1, was exposed to the conjugated bile salt, glycochenodeoxycholic acid (GCDA). Cell number was measured by the MTT incorporation assay and by Coulter counter. PI3 kinase/Akt activity was inferred from Western blots of phosphorylated and total Akt. Proliferation and apoptosis were determined by BrdU incorporation and cell death ELISA. ResultsA dose-dependent cell number increase was seen with a 20-minute exposure to GCDA. On Western blot, 200 μmol/L GCDA caused a 3-fold increase in Akt phosphorylation within 20 minutes, which was inhibited by 90% with the addition of PI3 kinase inhibitor, LY294002. LY294002 produced dose-dependent inhibition of GCDA-induced cell number increases. 200 μmol/L GCDA decreased apoptosis by 25%. Addition of LY294002 did not completely inhibit the antiapoptotic effect of bile. ConclusionsBile salts activate the PI3 kinase/Akt signaling pathway and stimulate cell growth in SEG-1. The majority of this PI3 kinase–mediated effect is secondary to increases in proliferation rather than to decreases in apoptosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.