Abstract

Acyl glucuronides are reactive electrophilic metabolites of carboxylate drugs, capable of undergoing hydrolysis, rearrangement and covalent binding reactions with proteins in vivo. Such covalent drug-protein adducts may be prerequisites for certain idiosyncratic immune and toxic responses in susceptible individuals. The present study examined the effect of experimental cholestasis on the extent and pattern of formation of protein adducts in plasma and liver of rats given the non-steroidal anti-inflammatory drug (NSAID) zomepirac (ZP). Groups of intact, bile-exteriorized and bile duct-ligated rats given a 50 mg/kg i.v. dose of ZP were studied for 24 hr. In intact rats, only 1.4% of the dose was recovered as the sum of ZP, ZP acyl glucuronide (ZAG) and its rearrangement isomers (iso-ZAG) in urine in 24 hr. In bile-exteriorized animals, 0.5% of the dose was recovered in urine in 24 hr, with 31.6% of the dose being recovered in bile (2.7% as ZP, 20.0% as ZAG and 8.9% as iso-ZAG). In the bile duct-ligated group, recovery of dose in 24 hr urine totalled 17.5% (1.7% as ZP, 6.7% as ZAG and 9.1% as iso-ZAG). ZAG and iso-ZAG were measurable in plasma only in the bile duct-ligated group, and covalent binding of ZP to plasma proteins was much higher (5–6 fold) than in intact or bile-exteriorized rats. Total adduct concentrations in liver were not significantly different among the three groups. Immunoblotting using a polyclonal ZP antiserum confirmed that serum albumin was a major target protein in plasma. The major ZP-modified bands in the livers of intact and bile-exteriorized rats were at about 110, 140 and 200 kDa. However, the bands at 110 and 140 kDa were much lower in the livers of bile duct-ligated rats. The results show that about 30% of ZP doses are normally excreted as ZAG and its isomers in bile, with only minor excretion in urine. Bile duct ligation shunts the glucuronide into blood (and urine), strongly promoting adduct formation with plasma proteins, and alters the pattern but not the total quantity of drug-modified proteins formed in the liver.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call