Abstract

Aflatoxin B1 (AFB1) is a hazardous mycotoxin that often contaminates animal feed and may potentially induce severe liver damage if ingested. The liver is the primary organ responsible for AFB1 detoxification through enzyme-catalyzed xenobiotic metabolism and bile acid (BA)-associated excretion. In this study, we sought to investigate whether exogenous BA improves hepatic AFB1 detoxification to alleviate AFB1-induced liver injury in broiler chickens. Five-day-old broiler chicks were randomly assigned to three groups. CON and AFB1 received a basal diet; AFB1 + BA received a basal diet with 250 mg/kg BA for 20 days. After a 3-day pre-feed, AFB1 and AFB1 + BA were daily gavaged with 250 μg/kg BW AFB1, while CON received gavage solvent for AFB1 treatment. Dietary BA supplementation protected chickens from AFB1-induced hepatic inflammation and oxidative stress. The hepatic biotransformation of AFB1 to its metabolite AFBO was improved, with accelerated excretion to the gallbladder and cecum. Accordantly, AFB1-induced down-regulation of detoxification genes, including cytochrome P450 enzymes, glutathione S-transferases, and the bile salt export pump, was rescued by BA supplementation. Moreover, liver X receptor α, suppressed by AFB1, was enhanced in BA-treated broiler chickens. These results indicate that dietary BA supplementation improves hepatic AFB1 detoxification and excretion through LXRα-involved regulation of xenobiotic enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.