Abstract

Ileal expression of the apical sodium-dependent bile acid transporter (ASBT) in the rat is unaffected by bile salts, yet in the mouse it is under negative-feedback regulation. The bile acid responsiveness of human ASBT is unknown. The human ASBT promoter linked to a luciferase reporter was studied in Caco-2 cells treated with chenodeoxycholic acid (CDCA) and transfected with expression plasmids for farnesoid X-receptor (FXR), short heterodimer partner (SHP), and retinoic acid receptor/retinoid X receptor (RAR/RXR). CDCA treatment of Caco-2 cells led to a 75% reduction in steady-state ASBT messenger RNA levels and a 78% reduction in human ASBT promoter activity. A dominant negative FXR abrogated the response to CDCA. Site-directed mutagenesis of an RAR/RXR cis element in the human ASBT promoter reduced its activity by 50% and eliminated the bile acid response. Retinoic acid activated the human ASBT promoter fourfold. SHP repressed the activity of the ASBT promoter and reduced activation by retinoic acid. Antisense mediated knock-down of SHP in Caco-2 cells partially offset the bile acid mediated repression of ASBT promoter activity. In conclusion, the human ASBT is positively regulated by retinoic acid. Bile acids induce a negative feedback regulation of human ASBT via an FXR-mediated, SHP-dependent effect upon RAR/RXR activation of ASBT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call