Abstract
One major difficulty in interpreting the changes occurring during liver regeneration is the co-existence of non-activated cells and proliferating hepatocytes at all stages of differentiation. The aim of this study was to investigate bile acid (BA) secretion into bile during normal (NLR) and synchronized (SLR) liver regeneration in rats. Regeneration was synchronized by reversible inhibition of ribonucleotide reductase by 10 h treatment with hydroxyurea (HU) shortly after two-third partial hepatectomy. Total BA output as measured by GC–MS increased immediately after partial hepatectomy. This was followed by a further transient enhancement during the next day in the NLR. HU treatment did not significantly modify total BA output, but after releasing synchronized regeneration a marked reduction was observed. This was followed by a recovery to reach values close to those of NLR on day 7 of the regenerative process in SLR. Amidated BA output as measured by HPLC analysis revealed an early enhancement in the proportion of non-conjugated BAs in bile in NLR. However, the profile of conjugated BAs, which was not affected by HU treatment, matched that of total BAs during the first stage of SLR. By contrast, the increase in BA output observed on day 3 of the regenerative process in this group was accounted for by an enhancement in non-conjugated BA secretion. On day 7 of the regenerative process, the proportion of conjugated BA in bile was restored to approximately 100% in this group. Most BA molecules were conjugated with taurine rather than with glycine in all experimental groups, during both NLR and SLR. GC–MS determinations indicated that the magnitude of the cholic acid predominance in all bile samples was significantly modified during liver regeneration. This was increased early after partial hepatectomy and declined toward control values after few (2–3) days. Enhancement in the cholic acid predominance was due to a reduction in the proportion of all other major BAs, above all ursocholic acid and ω-muricholic acid. By contrast, minor BAs in normal control rat bile such as allo-cholic acid were increased during both NLR and SLR, and remained at detectable levels up to day 7. Changes in the proportion of secreted BA species were similar in SLR and NLR except that the early reduction in the proportion of BAs other than cholic acid was more pronounced in SLR and the quantitative importance of the diversity in BA species was recovered earlier in SLR than in NLR. In summary, these results indicate that profound changes in BA secretion during rat liver regeneration do occur. Most of them are probably related to the existence of retro-differentiation/re-differentiation processes which are speeded up by hydroxyurea-induced synchronization of the wave of hepatocyte proliferation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.