Abstract

Cholestasis is a common complication of hepatitis B virus (HBV) infection, characterized by increased intrahepatic and plasma bile acid levels. Cholestasis was found negatively associated with hepatitis outcome, however, the exact mechanism by which cholestasis impacts anti-viral immunity and impedes HBV clearance remains elusive. Here, we found that cholestatic mice are featured with dysfunctional T cells response, as indicated by decreased sub-population of CD25+ /CD69+ CD4+ and CD8+ cells, while CTLA-4+ CD4+ and CD8+ subsets were increased. Mechanistically, bile acids disrupt intracellular calcium homeostasis via inhibiting mitochondria calcium uptake and elevating cytoplasmic Ca2+ concentration, leading to STIM1 and ORAI1 decoupling and impaired store-operated Ca2+ entry which is essential for NFAT signaling and T cells activation. Moreover, in a transgenic mouse model of HBV infection, we confirmed that cholestasis compromised both CD4+ and CD8+ T cells activation resulting in poor viral clearance. Collectively, our results suggest that bile acids play pivotal roles in anti-HBV infection via controlling T cells activation and metabolism and that targeting the regulation of bile acids may be a therapeutic strategy for host-virus defense.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.