Abstract
Rhodopsins are photoreceptive proteins using light to drive a plethora of biological functions such as vision, proton and ion pumping, cation and anion channeling, and gene and enzyme regulation. Here we combine organic synthesis, NMR structural studies, and photochemical characterization to show that it is possible to prepare a fully synthetic mimic of rhodopsin photoreceptors. More specifically, we conjugate a bile acid binding protein with a synthetic mimic of the rhodopsin protonated Schiff base chromophore to achieve a covalent complex featuring an unnatural protein host, photoswitch, and photoswitch-protein linkage with a reverse orientation. We show that, in spite of its molecular-level diversity, light irradiation of the prepared mimic fuels a photochromic cycle driven by sequential photochemical and thermal Z/E isomerizations reminiscent of the photocycles of microbial rhodopsins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.