Abstract

Chitosan and bilayered – Rhodamine 6G impregnated silica–chitosan – coatings (300–3000nm thick) were prepared and investigated as a model for controlled drug release. Properties of native, ionically (sodium triphosphate) and covalently (glutaraldehyde) cross-linked layers of chitosan in contact with aqueous phase (modeling human blood pH of ca. 7.3) were investigated. The cross-linking was confirmed by attenuated total reflection (ATR) Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS) and solid state 13C nuclear magnetic resonance (NMR) spectroscopy. The evolution of advancing water contact angles as a function of time was measured, and from the results restricted mobility of polymer segments in the interfacial layer of cross-linked chitosan coatings were assumed. Spectroscopic ellipsometry measurements showed that covalent cross-linking leads to a lowered, while ionic cross-linking to an increased swelling degree of chitosan layers. Despite the swelling behavior both cross-linked chitosan layers showed significant retard effect on dye release from the bilayered coatings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call