Abstract
Polymer magnetic core particles receive growing attention due to these materials owing magnetic properties which are widely used in different applications. The prepared composite particles are characterized with different properties namely: a magnetic core, a hydrophobic first shell, and finally an external second hydrophilic shell. The present study describes a method for the preparation of bi-layered polymer magnetic core particles (diameter range is 50–150 nm). This method comprises several steps including the precipitation of the magnetic iron oxide, coating the magnetite with oleic acid, attaching the first polymer shell by miniemulsion polymerization and finally introducing hydrophilic surface properties by condensation polymerization. The first step is the formation of magnetite nanoparticles within a co-precipitation process using oleic acid as the stabilizing agent for magnetite. The second step is the encapsulation of magnetite into polyvinylbenzyl chloride particles by miniemulsion polymerization to form a magnetic core with a hydrophobic polymer shell. The hydrophobic shell is desired to protect magnetite nanoparticles against chemical attack. The third step is the coating of magnetic core hydrophobic polymer shell composites with a hydrophilic layer of polyethylene glycol by condensation polymerization. Regarding the miniemulsion polymerization the influence of the amount of water, the mixing intensity and the surfactant concentration were studied with respect to the formation of particles which can be further used in chemical engineering applications. The resulting magnetic polymer nanoparticles were characterized by particle size measurement, chemical stability, iron content, TEM, SEM, and IR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.