Abstract
The development of osteochondral tissue engineered interfaces would be a novel treatment for traumatic injuries and aging associated diseases that affect joints. This study reports the development of a bilayered scaffold, which consists of both bone and cartilage regions. On the other hand, amniotic fluid-derived stem cells (AFSCs) could be differentiated into either osteogenic or chondrogenic cells, respectively. In this study we have developed a bilayered scaffolding system, which includes a starch/polycaprolactone (SPCL) scaffold for osteogenesis and an agarose hydrogel for chondrogenesis. AFSC-seeded scaffolds were cultured for 1 or 2weeks in an osteochondral-defined culture medium containing both osteogenic and chondrogenic differentiation factors. Additionally, the effect of the presence or absence of insulin-like growth factor-1 (IGF-1) in the culture medium was assessed. Cell viability and phenotypic expression were assessed within the constructs in order to determine the influence of the osteochondral differentiation medium. The results indicated that, after osteogenic differentiation, AFSCs that had been seeded onto SPCL scaffolds did not require osteochondral medium to maintain their phenotype, and they produced a protein-rich, mineralized extracellular matrix (ECM) for up to 2weeks. However, AFSCs differentiated into chondrocyte-like cells appeared to require osteochondral medium, but not IGF-1, to synthesize ECM proteins and maintain the chondrogenic phenotype. Thus, although IGF-1 was not essential for creating osteochondral constructs with AFSCs in this study, the osteochondral supplements used appear to be important to generate cartilage in long-term tissue engineering approaches for osteochondral interfaces. In addition, constructs generated from agarose–SPCL bilayered scaffolds containing pre-differentiated AFSCs may be useful for potential applications in regeneration strategies for damaged or diseased joints.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.