Abstract

Bilayered electrolyte membranes composed of BaZr0.1Ce0.7Y0.2O3−δ (BZCY) and Ce0.8Sm0.2O2−δ (SDC) were evaluated for solid oxide fuel cells (SOFCs), and the influence of the membrane architecture on the cell performance was investigated. The electrochemical testing results showed that the electron-blocking ability of BZCY layer depends on its exact location in the fuel cell. The partial internal short circuit was nearly totally eliminated for the cell with BZCY layer located at the anode side, and the corresponding cell exhibited a high open circuit voltage (OCV) of 1.0V at 700°C. In contrast, the cell with BZCY layer located at the cathode side still exhibited significant internal short-circuit behavior. The different electron-blocking ability can be ascribed to the atmosphere-dependent charge transport behavior of BZCY. The present results demonstrate that the bilayered BZCY/SDC membrane with BZCY layer located at the anode side is a promising electrolyte for highly efficient low-temperature SOFCs. Besides, the BZCY layer should be as thin as possible to achieve desirable power performance for the fuel cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.