Abstract

Molybdenum oxide (MoOX, X < 3) has been successfully demonstrated as an efficient passivating hole-selective contact in crystalline Si (c-Si) heterojunction solar cells because of its large bandgap (∼3.2 eV) and work function (∼6.9 eV). However, the severe performance degradation coming from the instability of the MoOX and its interfaces has not been well addressed. In this work, we started with a c-Si(p)/MoOX heterojunction solar cell that yielded a power conversion efficiency (PCE) of 15.86%, in which the MoOX film was synthesized by industry-compatible atomic layer deposition (ALD). The initial PCE dropped to 10.20% after 2 days because of severe migration of O and Ag at the MoOX/Ag interface. We solved this by the insertion of a CrOX layer between the MoOX layer and the Ag electrode. The solar cell was found to be stable for more than 8 months in air because of the suppression of interface degradation. Our work demonstrates an effective way of improving the stability of silicon solar cells with transition metal oxide carrier selective contacts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.