Abstract

Herein, a bilayer cylindrical conduit (P-CA) is presented consisting of electrospun polycaprolactone (PCL) nanofibers and sodium alginate hydrogel covalently cross-linked with N,N'-disuccinimidyl carbonate (DSC). The bilayer P-CA conduit is developed by combining the electrospinning and outer-inner layer methods. Using DSC, as a covalent crosslinker, increases the degradation time of the sodium alginate hydrogel up to 2 months. The swelling ratio of the hydrogel is also 503% during the first 8 h. The DSC cross-linked sodium alginate in the inner layer of the conduit promotes the adhesion and proliferation of nerve cells, while the electrospun PCL nanofibers in the outer layer provide maximum tensile strength of the conduit during surgery. P-CA conduit promotes the migration of Schwann cells along the axon in a rat model based on functional and histological evidences. In conclusion, P-CA conduit will be a promising construct for repairing sciatic nerves in a rat model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.