Abstract

Nanosecond fluorescence polarization anisotropy decay is used to determine the effect of the bacteriophage M13 coat protein on lipid bilayer acyl chain dynamics and order. The fluorescent acyl chain analogues cis- and trans-parinaric acid were used to determine the rate and extent of the angular motion of acyl chains in liquid crystalline (39 degrees C) dimyristoylphosphatidylcholine bilayers free of coat protein or containing the coat protein at a protein:lipid ratio of 1:30. Subnanosecond time resolution was obtained by using synchrotron radiation as the excitation source for single photon counting detection. Previous measurements of Förster energy transfer from coat protein tryptophan to cis- or trans-parinaric acid have shown that these probes are randomly distributed in the bilayer with respect to the protein. The anisotropy decay observed for pure bilayers has the form of a rapid drop, followed by a nonzero constant region extending from roughly 3 ns to at least 12 ns. The magnitude of the anisotropy in the plateau region is simply related to the acyl chain order parameter. The effect of the M13 coat protein is to increase the acyl chain order parameter significantly while having only a small effect on the rate of angular relaxation. This behavior is rationalized in terms of a simple microscopic model. The order parameters for pure lipid and coat protein containing bilayers are compared to 2H-NMR values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.