Abstract

People with lower-limb hemiparesis have impaired function on one side of the body that affects their walking ability. Wearable robotic assistance has been investigated to treat hemiparetic gait by applying assistance to the paretic limb. In this exploratory case series, we sought to compare the effects of bilateral vs. paretic-limb-only ankle exoskeleton assistance on walking performance in a case series of three heterogeneous presentations of lower-limb hemiparesis. A secondary goal was to validate the use of a real-time ankle-moment-adaptive exoskeleton control system for effectively assisting hemiparetic gait; the ankle moment controller accuracy ranged from 72 - 90% across all conditions and participants. Compared to walking without the device, both paretic-limb-only and bilateral assistance resulted in greater average total ankle power (up to 72%), improved treadmill walking efficiency (up to 28%), and increased over-ground walking distance (up to 41%). All participants achieved a more symmetrical, efficient gait pattern with bilateral assistance, indicating that assisting both limbs may be more beneficial than assisting only the paretic side in people with hemiparetic gait. The results of this case series are intended to inform future clinical studies and exoskeleton designs in a wide range of patient populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.