Abstract
Heat shock protein-27 (HSP-27) is an inducible stress response protein. It inhibits apoptotic cell death and is a reliable marker for oxidative stress. We studied the induction of HSP-27 in rat brains on days 1, 4 and 14 after repeated, pentylenetetrazole (PTZ)-induced seizures using immunohistochemisty. Saline treated control rats showed no induction of HSP-27. HSP-27 reactive astrocytes were rarely seen 1 or 4 days after PTZ injection. When present, single astrocytes were located in the cortex and/or the hippocampus. After 14 days PTZ treatment, a bilateral distribution of HSP-27 immunoreactive glia was present in piriform and entorhinal cortices and in the dentate gyrus of most brains. Rats with most intense HSP-27 upregulation showed HSP-27 in amygdala and thalamic nuclei. Astrocytes associated with blood vessels presented strongest HSP-27 staining, but did not show upregulation of gial fibrillary acidic protein and none responded with HSP-47 expression. Additionally, HSP-27 immunoreactivity increased in the endothelial cells of blood vessels in the affected brain regions, although no neuronal induction occurred. Contrastingly, a subconvulsive dose of the glutamine synthetase inhibitor l-methionine sulfoxime, which acts directly on astrocytes, resulted in a rapid, homogeneous astrocyte-specific HSP-27 upregulation within 24 h. Thus, repeated PTZ-induced seizure activity elicits a focal “heat shock” response in endothelial cells and astrocytes of selected cerebral regions indicating that expression of HSP-27 occurred in a seizure-dependent manner within the affected cerebral circuitries. Therefore, this PTZ-model of repeated seizure activity exhibited a cortical pattern of HSP-27 expression which is most comparable to that known from patients with epilepsy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.