Abstract

A visual and force feedback-based teleoperation scheme is proposed for cooperative tasks. The bilateral teleoperation system includes a haptic device, an overhead camera and a group of wheeled robots. The commands of formation and average velocities of the multiple robots are generated by the operator through the haptic device. The state of the multiple robots and the working environment is sent to the human operator. The received information contains the feedback force through the haptic device and visual information returned by a depth camera. The feedback force based on the difference between the desired and actual average velocities is presented. The wave variable method is employed in the bilateral teleoperation of multiple mobile robots with time delays. The effectiveness of the bilateral teleoperation system is demonstrated by experiments. The robots in the slave side are able to follow the commands from the master side to interact with the environments, including moving in different formations and pushing a box. The results show that the scheme enables the operator to manipulate a group of robots to complete cooperative tasks freely.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call