Abstract

Acute kidney injury (AKI) is defined as a rapid decline in renal function, in which persistent kidney dysfunction gradually progresses to chronic kidney disease (CKD) due to the irreversible loss of nephrons and their maladaptive repair. In recent years, the incidence of AKI has been increasing concerning diverse etiologies, including volume depletion, sepsis, nephrotoxicity, muscle injury, and major trauma, in which ischemia-reperfusion injury (IRI)accounts for most episodes. Development of the IRI model in mice is induced by surgical clamping of the renal pedicles, which provides powerful and controllable tools for preclinical models of AKI. Importantly, the IRI model is deployed at different stages of the AKI development, especially in the processes of AKI to CKD. Despite the IRI model being widely practiced in many laboratories, a series of variables still influence the results of this model. Here, we describe the procedure of IRI model development to provide a repeatable and reliable method for researchers to explore the underlying pathogenesis in the development of AKI and the progression of AKI to CKD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.