Abstract

As inflow and outflow stenoses worsen, both flow resistance and pressure increase in the stenotic vascular access. During dialysis, when blood flow decreases, it may retrograde from the peripheral artery through the palmar arch to the arterial anastomosis site. Arterial steal syndrome (ASS) causes distal hypoperfusion, resulting in hand ischemia or extremity pain and edema. Hence, this study proposes the bilateral photoplethysmography (PPG) for ASS detection in arteriovenous fistulas. The decision-making quantizer utilizes the fractional-order feature extraction method and a non-cooperative game (NCG) framework to evaluate the ASS risk level. Bilateral asynchronous PPG signals have significant differences in the rise time and amplitude in relation to the degree of stenosis. The fractional-order self-synchronization error formulation is a feature extraction method used to quantify bilateral differences in blood flow changes between the dexter and sinister PPG signals. The NCG model as a method of decision-making is then employed to evaluate the ASS risk level. Using an acoustic Doppler measurement, the resistive (Res) index is also used to evaluate the vascular access stenosis at the arterial anastomosis site. In contrast with alternative methods including the high-sensitivity C-reactive protein level or Res index, our experimental results indicate that the proposed decision-making quantizer is more efficient in preventing ASS during hemodialysis treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.