Abstract

Bilateral native nephrectomy has been suggested to improve renal allograft survival in man. This effect may be most prominent in patients experiencing acute tubular necrosis following transplantation. Thus, native kidneys may alter the course of ischemic acute tubular necrosis in the transplanted kidney. In the present studies, we utilized an experimental model of syngeneic transplantation in which rejection does not occur. We studied Lewis rat renal isografts transplanted into littermates following sham, unilateral or bilateral native nephrectomy. In a fourth group of rats, we evaluated the importance of native kidney excretory function by studying isografts transplanted into littermates with bilaterally obstructed native kidneys. Renal blood flow and excretory function were measured in vivo, eight days following transplantation. Renal excretory function of isografts transplanted into animals following bilateral native nephrectomy was similar to normal nontransplanted Lewis kidneys. The presence of either one or both functioning native kidneys significantly reduced isograft inulin clearance, PAH clearance, and blood flow. However, when isografts were transplanted into Lewis rats with bilaterally obstructed native kidneys, renal isograft inulin clearance and blood flow were not significantly impaired. Nontransplanted kidneys demonstrated "functional hypertrophy" following contralateral nephrectomy, with glomerular filtration rate and renal blood flow increasing by approximately 50%. In contrast, isograft glomerular filtration rate in animals following bilateral native nephrectomy was equivalent to that of single kidneys from normal animals with both kidneys in situ. However, renal blood flow of isografts from these animals increased to the same level as nontransplanted Lewis kidneys following contralateral nephrectomy.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call