Abstract

This paper introduces a novel magnetic-haptic micromanipulation platform with promising potential for extensive biological and biomedical applications. The platform has three basic subsystems: a magnetic untethered microrobotic system, a haptic device, and a scaled bilateral teleoperation system. A mathematical force model of the magnetic propulsion mechanism is developed, and used to design PID controllers for magnetic actuation mechanism. A gain-switching position-position teleoperation scheme is employed for this haptic application. In experimental verifications, a human operator controls the motion of the microrobot via a master manipulator for dexterous micromanipulation tasks. The operator can feel force during microdomain tasks if the microrobot encounters a stiff environment. The effect of hard contact is fed back to the operator's hand in a 20 mm × 20 mm × 30 mm working envelope of the proposed platform. Conducting several experiments under different conditions, rms of position tracking errors varied from 20 to 40 μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.