Abstract

To evaluate 7-T MRI of both hips using a multi-channel transmit technology to compensate for inherent B1 inhomogeneities in volunteers and patients with avascular necrosis of the femoral head. A self-built, eight-channel transmit-receive coil was utilized for B1 modification at 7T. Two shim modes (individual shim vs. CP2+ mode) were initially compared and the best shim result was used for all further imaging. Robustness of sequences against B1 inhomogeneities, appearance of anatomic and pathologic changes of the femoral heads of MEDIC, DESS, PD/T2w TSE, T1w TSE, and STIR sequences at 7T were evaluated in 12 subjects on a four-point scale (1-4): four male volunteers and eight patients (seven males, one female) suffering from avascular necrosis treated by advanced core decompression. Successful MRI of both femoral heads was achieved in all 12 subjects. CP2+ mode proved superior in ten of 12 cases. DESS proved most robust against B1 inhomogeneity. Anatomical details (labrum, articular cartilage) were best depicted in PDw, MEDIC, and DESS, while for depiction of pathological changes PDw, DESS (0.76mm(3)) and T1w were superior. Our initial results of ultra-high-field hip joint imaging demonstrate high-resolution, high-contrast images with a good depiction of anatomic and pathologic changes. However, shifting areas of signal dropout from the femoral heads to the center of the pelvis makes these areas not assessable. For clinical workflow CP2+ mode is most practical. Seven-Tesla MRI of the hip joints may become a valuable complement to clinical field strengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.