Abstract

BackgroundAnatomically and functionally distinct sensory and motor neocortical areas form during mammalian development through a process called arealization. This process is believed to be reliant on both activity-dependent and activity-independent mechanisms. Although both mechanisms are thought to function concurrently during arealization, the nature of their interaction is not understood. To examine the potential interplay of extrinsic activity-dependent mechanisms, such as sensory input, and intrinsic activity-independent mechanisms, including gene expression in mouse neocortical development, we performed bilateral enucleations in newborn mice and conducted anatomical and molecular analyses 10 days later. In this study, by surgically removing the eyes of the newborn mouse, we examined whether early enucleation would impact normal gene expression and the development of basic anatomical features such as intraneocortical connections and cortical area boundaries in the first 10 days of life, before natural eye opening. We examined the acute effects of bilateral enucleation on the lateral geniculate nucleus of the thalamus and the neocortical somatosensory-visual area boundary through detailed analyses of intraneocortical connections and gene expression of six developmentally regulated genes at postnatal day 10.ResultsOur results demonstrate short-term plasticity on postnatal day 10 resulting from the removal of the eyes at birth, with changes in nuclear size and gene expression within the lateral geniculate nucleus as well as a shift in intraneocortical connections and ephrin A5 expression at the somatosensory-visual boundary. In this report, we highlight the correlation between positional shifts in ephrin A5 expression and improper refinement of intraneocortical connections observed at the somatosensory-visual boundary in enucleates on postnatal day 10.ConclusionsBilateral enucleation induces a positional shift of both ephrin A5 expression and intraneocortical projections at the somatosensory-visual border in only 10 days. These changes occur prior to natural eye opening, suggesting a possible role of spontaneous retinal activity in area border formation within the neocortex. Through these analyses, we gain a deeper understanding of how extrinsic activity-dependent mechanisms, particularly input from sensory organs, are integrated with intrinsic activity-independent mechanisms to regulate neocortical arealization and plasticity.

Highlights

  • And functionally distinct sensory and motor neocortical areas form during mammalian development through a process called arealization

  • In the present study we investigated the impact of very early bilateral enucleation on the cortical expression of several genes that have been implicated in arealization or topographic patterning, either through mutation or correlative studies: Cadherin 8 (Cad8) previously shown to delineate distinct neural pathways and cortical areas [51]; COUP-TF1, which is required for proper regionalization and corticospinal motor neuron differentiation [42,43]; ephrin A5, strongly expressed in the putative somatosensory cortex and implicated in topographic patterning [28,39,52,53]; inhibitor of DNA binding 2 (Id2), a well-established gene to study positional identity [54]; LIM homeobox protein 2 (Lhx2), required for regional specification [55]; and retinoic acid receptor related orphan receptor beta (RORß, known as RZRß), a highly specific marker for the primary sensory areas [7]

  • Studies in several species have elucidated the physiological consequences of enucleation within the visual cortex, little is known of the effects on the formation and maintenance of ipsilateral intraneocortical connection (INC) between the visual cortex and other cortical sensory regions

Read more

Summary

Introduction

And functionally distinct sensory and motor neocortical areas form during mammalian development through a process called arealization. This process is believed to be reliant on both activitydependent and activity-independent mechanisms. To examine the potential interplay of extrinsic activity-dependent mechanisms, such as sensory input, and intrinsic activity-independent mechanisms, including gene expression in mouse neocortical development, we performed bilateral enucleations in newborn mice and conducted anatomical and molecular analyses 10 days later. By surgically removing the eyes of the newborn mouse, we examined whether early enucleation would impact normal gene expression and the development of basic anatomical features such as intraneocortical connections and cortical area boundaries in the first 10 days of life, before natural eye opening. The exact nature of the interaction, is not known

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call