Abstract

To evaluate the image quality, robustness, and diagnostic performance of submillimeter in-plane resolution diffusion-weighted ( DW diffusion-weighted ) magnetic resonance (MR) imaging at 7 T in the assessment of breast tumors. Institutional review board approval and written informed consent of five volunteers and 33 patients with 33 breast lesions (31 with histopathologic confirmation, two with confirmation at follow-up) were obtained. Image quality optimization and comparisons of readout-segmented echo-planar imaging ( rs-EPI readout-segmented echo-planar imaging ) and single-shot echo-planar imaging ( ss-EPI single-shot echo-planar imaging ) with or without parallel imaging were performed in volunteers. In all patients, bilateral DW diffusion-weighted imaging was performed in 3 minutes 35 seconds by using combined rs-EPI readout-segmented echo-planar imaging and parallel imaging with 0.9 × 0.9 mm in-plane resolution with a 7-T whole-body MR imager. Image quality, lesion conspicuity, and image properties (ie, signal-to-noise ratio, contrast-to-noise ratio) were assessed. Regions of interest were drawn in the largest lesion in each patient (23 malignant lesions, 10 benign lesions) by two independent readers. Apparent diffusion coefficient ( ADC apparent diffusion coefficient ) values were used to differentiate between benign and malignant breast tumors. DW diffusion-weighted imaging with combined parallel imaging and rs-EPI readout-segmented echo-planar imaging reduced artifacts (ie, blurring and geometric distortions) by a calculated factor of seven when compared with DW diffusion-weighted imaging with ss-EPI single-shot echo-planar imaging , and it improved image quality from a score of 1 of 10 to a score of 8 of 10. The rs-EPI readout-segmented echo-planar imaging sequence with a b value of 0 sec/mm(2) yielded high-spatial-resolution T2-weighted MR images. An ADC apparent diffusion coefficient threshold of 1.275 × 10(-3) mm(2)/sec enabled differentiation between benign and malignant breast lesions, with sensitivity and specificity of 96% and 100%, respectively, for both independent readers. At 7 T, one DW diffusion-weighted imaging examination of less than 4 minutes yielded high-quality ADC apparent diffusion coefficient maps and high-spatial-resolution T2-weighted MR images that were used to assess tumor and breast morphology. ADC apparent diffusion coefficient quantification alone enabled excellent differentiation of benign and malignant breast lesions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.