Abstract
This chapter describes a new bilateral control method of teleoperation systems. This method is based on the state space formulation and it can be applied to any teleoperation system where the master and the slave would be represented by nth-order linear differential equations. The control system allows that the slave manipulator follows the master. The tracking is achieved by state convergence between the master and the slave. The method is able also to establish the desired dynamics of this convergence and the dynamics of the slave manipulator. Furthermore a simple design procedure is provided to obtain the control system gains. The advantage of this design procedure is that it is only necessary to solve a set of equations to calculate the control system gains. The control by state convergence can be also applied to teleoperation systems with communication time delay. In this case, the Taylor expansion is used to approximate the time delay. The state convergence allows that the slave manipulator follows the master in spite of the time delay in the communication channel. Experimental results with a teleoperation system of one DoF are presented to verify the control method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.