Abstract

Residual coding has gained prevalence in lossless compression, where a lossy layer is initially employed and the reconstruction errors (i.e., residues) are then losslessly compressed. The underlying principle of the residual coding revolves around the exploration of priors based on context modeling. Herein, we propose a residual coding framework for 3D medical images, involving the off-the-shelf video codec as the lossy layer and a Bilateral Context Modeling based Network (BCM-Net) as the residual layer. The BCM-Net is proposed to achieve efficient lossless compression of residues through exploring intra-slice and inter-slice bilateral contexts. In particular, a symmetry-based intra-slice context extraction (SICE) module is proposed to mine bilateral intra-slice correlations rooted in the inherent anatomical symmetry of 3D medical images. Moreover, a bi-directional inter-slice context extraction (BICE) module is designed to explore bilateral inter-slice correlations from bi-directional references, thereby yielding representative inter-slice context. Experiments on popular 3D medical image datasets demonstrate that the proposed method can outperform existing state-of-the-art methods owing to efficient redundancy reduction. Our code will be available on GitHub for future research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call