Abstract

This paper extends the observations presented in the previously published work on the afterhyperpolarization (AHP) duration changes in motoneurones (MNs) on the paretic (more affected) side of 11 post-stroke patients by the same analysis on the non-paretic (less-affected) side. The estimated AHP duration for patients’ MNs supplying more-affected muscles was significantly longer than control values and the elongation decreased with patient age and disorder duration. For MNs supplying less-affected muscles, dependency of AHP duration on age was closer to the control data, but the scatter was substantially bigger. However, the AHP duration estimate of less-affected MNs tended to be longer than that of controls in the short time elapsed since the stroke, and shorter than controls in the long time. Our results thus suggest that the spinal MNs on both sides respond to the cerebral stroke rapidly with prolongation of AHP duration, which tends to normalize with time, in line with functional recovery. This suggestion is in concert with the published research on post-stroke changes in brain hemispheres. To our knowledge, these dependencies have never been investigated before. Since the number of our data was limited, the observed trends should be verified in a larger sample of patients and such a verification could take into account the suggestions for data analysis that we provide in this paper. Our data are in line with the earlier published research on MN firing characteristics post-stroke and support the conclusion that the MUs of the muscles at the non-paretic side are also affected and cannot be considered a suitable control for the MUs on the paretic side.

Highlights

  • Stroke is a devastating condition often resulting in spastic hemiparesis

  • 39 motor unit (MU) were recorded from control subjects and 113 from patients: 64 and 49 from more- and less-affected muscles, respectively

  • Our data indicate the possibility that spinal MNs respond to the cerebral stroke with prolongation of AHP duration, which tends to recover after the accident

Read more

Summary

Introduction

Stroke is a devastating condition often resulting in spastic hemiparesis. In many clinical studies, the non-paretic side is considered to be “healthy” and the common practice is to compare results between paretic and non-paretic extremities (e.g. [1, 2]). It has been shown [3] that the stroke lesion at one side of the brain alters neuronal activity in both affected

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.