Abstract

A bilateral body plan is predominant throughout the animal kingdom. Bilaterality of amniote embryos becomes recognizable as midline morphogenesis begins at gastrulation, bisecting an embryonic field into the left and right sides, and left-right asymmetry patterning follows. While a series of laterality genes expressed after the left-right compartmentalization has been extensively studied, the laterality patterning prior to and during midline morphogenesis has remained unclear. Here, through a biophysical quantification in a high spatial and temporal resolution, applied to a chick model system, we show that a large-scale bilateral counter-rotating cellular flow, termed as polonaise movements, display left-right asymmetries in early gastrulation. This cell movement starts prior to the formation of the primitive streak, which is the earliest midline structure, and earlier than expression of laterality genes. The cellular flow speed and vorticity unravel the location and timing of the left-right asymmetries. The bilateral flows displayed a Right dominance after six hours since the start of cell movements. Mitotic arrest that diminishes primitive streak formation resulted in changes in the bilateral flow pattern, but the Right dominance persisted. Our data indicate that the left-right asymmetry in amniote gastrula becomes detectable prior to the point when the asymmetric regulation of the laterality signals at the node leads to the left-right patterning. More broadly, our results suggest that physical processes can play an unexpected but significant role in influencing left-right laterality during embryonic development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.