Abstract

Bike sharing systems have been deployed in many cities to promote green transportation and a healthy lifestyle. One of the key factors for maximizing the utility of such systems is placing bike stations at locations that can best meet users' trip demand. Traditionally, urban planners rely on dedicated surveys to understand the local bike trip demand, which is costly in time and labor, especially when they need to compare many possible places. In this paper, we formulate the bike station placement issue as a bike trip demand prediction problem. We propose a semi-supervised feature selection method to extract customized features from the highly variant, heterogeneous urban open data to predict bike trip demand. Evaluation using real-world open data from Washington, D.C. and Hangzhou shows that our method can be applied to different cities to effectively recommend places with higher potential bike trip demand for placing future bike stations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.