Abstract

This study focuses on the optimal network design problem of bike paths, which are on or adjacent to roadways but are physically separated from motorized traffic within the existing urban network. The problem seeks to maximize the total route utilities of cyclists and capture their actual route choice behavior using a path-size logit model. A mixed-integer nonlinear nonconvex model is developed for the problem and is reformulated and linearized into a mixed-integer linear program. The program is solved with a global optimization method and a matheuristic. Results are provided to illustrate the performance of these methods and the model properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.