Abstract

We prove that on the set of lattice paths with steps $N=(0,1)$ and $E=(1,0)$ that lie between two boundaries $B$ and $T$, the two statistics `number of $E$ steps shared with $B$' and `number of $E$ steps shared with $T$' have a symmetric joint distribution. We give an involution that switches these statistics, preserves additional parameters, and generalizes to paths that contain steps $S=(0,-1)$ at prescribed $x$-coordinates. We also show that a similar equidistribution result for other path statistics follows from the fact that the Tutte polynomial of a matroid is independent of the order of its ground set. Finally, we extend the two theorems to $k$-tuples of paths between two boundaries, and we give some applications to Dyck paths, generalizing a result of Deutsch, and to pattern-avoiding permutations. On montre que, sur l'ensemble des chemins avec des pas $N=(0,1)$ et $E=(1,0)$ qui se trouvent entre deux chemins donnés $B$ et $T$, les deux statistiques"`nombre des pas $E$ en commun avec $B$" et "nombre des pas $E$ en commun avec $T$" ont une distribution conjointe symétrique. On donne une involution qui échange ces deux statistiques, préserve quelques autres paramètres additionnels, et admet une généralisation à des chemins avec des pas $S=(0, -1)$ dans des positions données. On montre aussi un autre résultat d'équidistribution similaire, lié au polynôme de Tutte d'un matroïde. Finalement, on étend les deux théorèmes à $k$-tuples de chemins entre deux frontières, et on donne quelques applications aux chemins de Dyck, en généralisant un résultat de Deutsch, et aux permutations avec des motifs exclus.

Highlights

  • Directed lattice paths are fundamental combinatorial objects

  • It is well known that they are counted by the Catalan numbers, and hundreds of Dyck path statistics have been studied in the literature

  • A frequently quoted result of Deutsch [5] states that on Dyck paths of a given length, the number of returns has the same distribution as the height of the first peak, and the joint distribution of these two statistics is symmetric

Read more

Summary

Introduction

Directed lattice paths are fundamental combinatorial objects. One reason is that they have have applications to statistical physics, algebra and computer science. Let P(B, T ) be the set of lattice paths with north and east steps from the origin to (x, y) that lie between B and T , i.e., weakly above B and weakly below T. We construct an involution that proves a generalized version of Theorem 1.1 It applies to a more general set of paths, and gives a refined result by preserving the sequence of y-coordinates of the east steps that are not contacts. Let P(B, T ) be the set of lattice paths from the origin to (x, y) with north, east and south (S = (0, −1)) steps, lying weakly above B and weakly below T. The second construction modifies a given path by changing a single top contact into a bottom contact

A transformation on words
A transformation on paths with one contact
The maps φ and Φ
A k-tuple of paths between two boundaries
Dyck paths and generalizations
Watermelon configurations
Flagged semistandard Young tableaux
Pattern-avoiding permutations
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call