Abstract

We present a precise correspondence between separation logic and a simple notion of predicate BI, extending the earlier correspondence given between part of separation logic and propositional BI. Moreover, we introduce the notion of a BI hyperdoctrine, show that it soundly models classical and intuitionistic first- and higher-order predicate BI, and use it to show that we may easily extend separation logic to higher-order . We also demonstrate that this extension is important for program proving, since it provides sound reasoning principles for data abstraction in the presence of aliasing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.