Abstract
AbstractWe consider two natural gradings on the space of symmetric functions: by degree and by length. We introduce a differential operator T that leaves the components of this double grading invariant and exhibit a basis of bihomogeneous symmetric functions in which this operator is triangular. This allows us to compute the eigenvalues of T, which turn out to be nonnegative integers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.