Abstract

Solvent additive processing has become the most effective method to tune the nanostructure of donor–acceptor (D–A) type copolymer/fullerene bulk heterojunctions (BHJs) solar cells for improving power conversion efficiencies. However, to date qualitative microscopic observations reveal discrepant results on the effects of solvent additives. Here, we present quantitative evolution of bi-hierarchical nanostructure of D–A copolymers and fullerenes by employing grazing-incidence small/wide angle X-ray scattering (GISAXS/GIWAXS) techniques and [2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)]/[6,6]-phenyl-C71-butyric acid methyl ester (PCPDTBT/PCBM) BHJ as model materials. An accurate GISAXS model analysis is established herein for revealing the distinctive bi-hierarchical nanostructures from molecular level to a scale of hundreds of nanometers. The mechanisms of hierarchical formation and mutual influence between PCPDTBT and PCBM domains are proposed to correlate with photovoltaic properties. These results provide a comprehensive interpretation in respect to previous studies on the nanostructures of D–A copolymer/fullerene BHJs. It is helpful for optimum structural design and associated synthesis improvement for achieving high efficiency BHJ solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.