Abstract

BackgroundStroke is a leading cause of perinatal brain injury with variable outcomes including cerebral palsy and epilepsy. The biological processes that underlie these heterogeneous outcomes are poorly understood. Alterations in developmental myelination are recognized as a major determinant of outcome in preterm brain injury but have not been explored in perinatal stroke. We aimed to characterize myelination in hemiparetic children after arterial perinatal stroke, hypothesizing that ipsilesional myelination would be impaired, the degree of which would correlate with poor outcome.MethodsRetrospective, controlled cohort study. Participants were identified through the Alberta Perinatal Stroke Project (APSP), a population-based research cohort (n > 400). Inclusion criteria were: 1) MRI-confirmed, unilateral arterial perinatal stroke, 2) T1-weighted MRI after 6 months of age, 3) absence of other neurological disorders, 4) neurological outcome that included at least one of the following tests - Pediatric Stroke Outcome Measure (PSOM), Assisting Hand Assessment (AHA), Melbourne Assessment (MA), neuropsychological evaluation (NPE), and robotic sensorimotor measurements. FreeSurfer software measured hemispheric asymmetry in myelination intensity (primary outcome). A second method using ImageJ software validated the detection of myelination asymmetry. A repeated measures ANOVA was used to compare perilesional, ipsilesional remote, and contralesional homologous region myelination between stroke cases and typically developing controls. Myelination metrics were compared to clinical outcome measures (t-test, Pearson's correlation).ResultsTwenty youth with arterial stroke (mean age: 13.4 ± 4.2yo) and 27 typically developing controls (mean age: 12.5 ± 3.7yo) were studied in FreeSurfer. Participants with stroke demonstrated lower myelination in the ipsilesional hemisphere (p < 0.0001). Myelination in perilesional regions had lower intensity compared to ipsilesional remote areas (p < .00001) and contralesional homologous areas (p < 0.00001). Ipsilesional remote regions had decreased myelination compared to homologous regions on the contralesional hemisphere (p = 0.016). Contralesional myelination was decreased compared to controls (p < 0.00001). Myelination metrics were not strongly associated with clinical motor, robotic sensorimotor, or neuropsychological outcomes though some complex tests requiring speeded responses had moderate effect sizes.ConclusionMyelination of apparently uninjured brain in both the ipsilesional and contralesional hemispheres is decreased after perinatal stroke. Differences appear to radiate outward from the lesion. Further study is needed to determine clinical significance.

Highlights

  • Stroke is a leading cause of perinatal brain injury, cerebral palsy, and lifelong disability (Kirton and deVeber, 2013)

  • Six participants were subsequently excluded from FreeSurfer analysis due to reduced quality anatomical scans caused by excessive head motion or errors in modelling

  • Myelination patterns are altered after perinatal stroke

Read more

Summary

Introduction

Stroke is a leading cause of perinatal brain injury, cerebral palsy, and lifelong disability (Kirton and deVeber, 2013). Stroke is a leading cause of perinatal brain injury with variable outcomes including cerebral palsy and epilepsy. FreeSurfer software measured hemispheric asymmetry in myelination intensity (primary outcome). A repeated measures ANOVA was used to compare perilesional, ipsilesional remote, and contralesional homologous region myelination between stroke cases and typically developing controls. Myelination metrics were compared to clinical outcome measures (t-test, Pearson's correlation). Myelination in perilesional regions had lower intensity compared to ipsilesional remote areas (p < .00001) and contralesional homologous areas (p < 0.00001). Ipsilesional remote regions had decreased myelination compared to homologous regions on the contralesional hemisphere (p = 0.016). Conclusion: Myelination of apparently uninjured brain in both the ipsilesional and contralesional hemispheres is decreased after perinatal stroke.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.