Abstract

Let R be a bounded open subset of N-dimensional Euclidean space EN,N ≧ 1, let {xt: t ≧ 0} be a separable Brownian motion starting at a point x ɛ R, and let τ = τR be the first time the motion hits the complement of R. It is known [1] that if g is a bounded measurable function on the boundary ∂R of R, then h(x) = Ex[g(xτ)] is a harmonic function of x ɛ R which “solves” the Dirichlet problem for the boundary function g; i.e., Δh = 0 on R, where Δ is the Laplacian. In elastic plate problems, one must solve the biharmonic equation subject to certain boundary conditions. For the more important applications, these boundary conditions involve the values of u and the normal derivative of u at points of ∂R. Even though a treatment of this Neumann type problem is not available at this time, some things can be said about biharmonic functions and their relationship to Brownian motion. We will show, in fact, that u(x)= Ex[τ(xτ)] is a biharmonic function on R which “satisfies” the boundary conditions (i) u=0 on ∂R and (ii) Δu= −2g on ∂R, provided g satisfies certain hypotheses. More generally, we will show that u(x)=Ex[Δkg(XΔ)] is polyharmonic of order k + 1 on R (i.e., Δk + 1u = Δ(Δku) = 0 on R) and that it satisfies certain boundary conditions. A treatment of the special case g ≡ 1 on ∂R can be found in [3].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.