Abstract
S-sulfenylation is a vital post-translational modification (PTM) of proteins, which is an intermediate in other redox reactions and has implications for signal transduction and protein function regulation. However, there are many restrictions on the experimental identification of S-sulfenylation sites. Therefore, predicting S-sulfoylation sites by computational methods is fundamental to studying protein function and related biological mechanisms. In this paper, we propose a method named BiGRUD-SA based on bi-directional gated recurrent unit (BiGRU) and self-attention mechanism to predict protein S-sulfenylation sites. We first use AAC, BLOSUM62, AAindex, EAAC and GAAC to extract features, and do feature fusion to obtain original feature space. Next, we use SMOTE-Tomek method to handle data imbalance. Then, we input the processed data to the BiGRU and use self-attention mechanism to do further feature extraction. Finally, we input the data obtained to the deep neural networks (DNN) to identify S-sulfenylation sites. The accuracies of training set and independent test set are 96.66% and 95.91% respectively, which indicates that our method is conducive to identifying S-sulfenylation sites. Furthermore, we use a data set of S-sulfenylation sites in Arabidopsis thaliana to effectively verify the generalization ability of BiGRUD-SA method, and obtain better prediction results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.