Abstract
<p><span id="docs-internal-guid-df1e3816-7fff-2396-860a-693df6c8ad2e"><span>An independent component analysis (ICA) is one of the solutions of a blind source separation problem. ICA is a statistical approach that depends on the statistical properties of the mixed signals. The purpose of the ICA method is to demix the mixed source signals (observation signals) and rcovering those signals. The abbreviation of the problem is that the ICA needs for optimizing by using one of the optimization approaches as swarm intelligent, neural neworks, and genetic algorithms. This paper presents a hybrid method to optimize the ICA method by using the quantum particle swarm optimization method (QPSO) to optimize the Bigradient neural network method that applies to separate mixed signals and recover sources signals. The results of an implement this work prove that this method gave good results comparing with other methods such as the Bigradient neural network and the QPSO method, based on several evaluation measures as signal-to-noise ratio, signal-to-distortion ratio, absolute value correlation coefficient, and the computation time.</span></span></p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IAES International Journal of Artificial Intelligence (IJ-AI)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.