Abstract
We consider the question of simplicity of a ring $R$ under the action of its ring of differential operators $D_R$. We give examples to show that even when $R$ is Gorenstein and has rational singularities $R$ need not be a simple $D_R$-module; for example, this is the case when $R$ is the homogeneous coordinate ring of a smooth cubic surface. Our examples are homogeneous coordinate rings of smooth Fano varieties, and our proof proceeds by showing that the tangent bundle of such a variety need not be big. We also give a partial converse showing that when $R$ is the homogeneous coordinate ring of a smooth projective variety $X$, embedded by some multiple of its canonical divisor, then simplicity of $R$ as a $D_R$-module implies that $X$ is Fano and thus $R$ has rational singularities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.