Abstract

Laminar-turbulent transition dictates an increase in skin friction. The resulting turbulent skin friction contributes to approximately 40% of the total drag of commercial aircraft. Reducing the turbulent flow region by postponing transition can therefore significantly reduce the carbon footprint and costs of flying. Transition prediction is required in order to do so, which depends on a detailed understanding of the transition process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.