Abstract

A numerical method is developed to perform BiGlobal stability computations on structured curvilinear meshes. The Linearized Euler Equations for an incompressible planar flow are considered. Perturbations are sought for in normal form, leading to a differential eigenvalue problem, which can be discretized on a Cartesian computational domain through a spectral collocation method based on Chebyshev polynomials. The Jacobian of the non-analytical coordinate change from the computational domain to the physical curvilinear domain is also calculated numerically using the same spectral method. This procedure is tested on several test cases with comparison to reference solutions obtained by 1D stability calculations. To cite this article: F. Longueteau, J.-P. Brazier, C. R. Mecanique 336 (2008).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.