Abstract

IntroductionThe mechanisms by which development favors or constrains the evolution of new phenotypes are incompletely understood. Polyphenic species may benefit from developmental plasticity not only regarding ecological advantages, but also potential for evolutionary diversification. For instance, the repeated evolution of novel castes in ants may have been facilitated by the existence of alternative queen and worker castes and their respective developmental programs.Material and Methods Cataglyphis bombycina is exceptional in its genus because winged queens and size-polymorphic workers occur together with bigger individuals having saber-shaped mandibles. We measured seven body parts in more than 150 individuals to perform a morphometric analysis and assess the developmental origin of this novel phenotype.ResultsAdults with saber-shaped mandibles differ from both workers and queens regarding the size of most body parts. Their relative growth rates are identical to workers for some pairs of body parts, and identical to queens for other pairs of body parts; critical sizes differ in all cases.ConclusionsBig individuals are a third caste, i.e. soldiers, not major workers. Novel traits such as elongated mandibles are combined with a mix of queen and worker growth rates. We also reveal the existence of a dimorphism in the queen caste (microgynes and macrogynes). We discuss how novel phenotypes can evolve more readily in the context of an existing polyphenism. Both morphological traits and growth rules from existing queen and worker castes can be recombined, hence mosaic phenotypes are more likely to be viable. In C. bombycina, such a mosaic phenotype appears to function both for defense (saber-shaped mandibles) and fat storage (big abdomen). Recycling of developmental programs may have contributed to the morphological diversity and ecological success of ants.

Highlights

  • The mechanisms by which development favors or constrains the evolution of new phenotypes are incompletely understood

  • Adults with saber-shaped mandibles differ from both workers and queens regarding the size of most body parts. Their relative growth rates are identical to workers for some pairs of body parts, and identical to queens for other pairs of body parts; critical sizes differ in all cases

  • We reveal the existence of a dimorphism in the queen caste

Read more

Summary

Introduction

The mechanisms by which development favors or constrains the evolution of new phenotypes are incompletely understood. Organs follow distinct growth rules that produce an integrated phenotype. Two parameters are crucial: growth rate defines the speed at which each organ grows, and critical size specifies the overall size of the individual at which growth stops and development is complete [1]. By modifying growth rules (growth rate and critical size), new phenotypes can be produced. Changing critical size without altering growth rates results in new phenotypes that are in the continuity of existing ones. Modifying growth rates can lead to dramatically different phenotypes. We explore how growth rules are modified to generate new phenotypes by using one of the most polyphenic animal taxon as a model: ants

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.