Abstract

In this paper, we had analyzed a large scale Diabetic data sets for several patients to find the length of time taken for treatment for each class of Diabetes and the risk of re-admission of diabetic patients performing Bigdata analytics, the type of diabetes and its outcome which acted as a high risk sample of patient data sets. We have collected and integrated different sources of diabetic information for several patients, from primary and secondary treatment information to administrative information, to analyze novel view of patient care processes such as type of treatments and every patient behaviors on which results multifaceted nature of chronic care that we take into our account to predict the survival factors and length of stay. Nowadays by using electronic medical equipments with high quality and high degree calibrations, we are able to gather large amounts of real-time diabetic data sets. The requires the usage of distributed platforms for making BigData analysis that results on making decisions based on available data and its trends. This type of Bigdata analysis allows geographical and environmental information of patients’ enables the capability of interpreting the ethnicity of data gathered and extract new analysis to identify survival options and treatment timelines (LOS) from them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.